Atmospheric environmental capacity (AEC) is an important basis for setting standards of urban and regional atmospheric pollutant emission. Accurate quantification of AEC in the atmospheric planetary boundary layer (PBL) is of great significance to prevention and control of air pollution.
"Since the meteorological conditions in PBL are constantly changing, the AEC is a dynamic variable. The current algorithm in national standards for estimating annual AEC has great limitations in practical application." Said Prof. XIN Jinyuan with the Institute of Atmospheric Physics at the Chinese Academy of Sciences. "Fine-resolution vertical observations show that aerosol such as PM2.5 has a significant layered structure in the PBL, and the single-box hypothesis in the traditional algorithm is inconsistent with reality."
In a recently published study in
Science of The Total Environment, XIN proposed a new algorithm for dynamic multi-box AEC. Compared with the A-value method adopted in the current national standard, The new algorithm uses coefficient A calculated by high-resolution ceilometer and Doppler wind profiler lidar to replace the regional empirical coefficient A (Fig. 1). Based on Lettau dynamic balance model, time coefficient was added to construct dynamic AEC. The backscattering coefficient profile was used to integrate the concentration of particulate matter inside the PBL, and the multi-box model was adopted in the vertical direction to make it suitable for PM
2.5 and other particulate matter.
"Combined with the atmospheric circulation classification, the AEC under typical PBL structures and circulation background can be accurately estimated." Said XIN.
Figure 1. Schematic diagram of the traditional single-box model (a) and the improved dynamic multi-box model based on A-value method (b); Monitoring technology of key meteorological elements in PBL (c, d, e) (Image by XIN Jinyuan)
The improved algorithm can accurately calculate PM2.5 AEC under different circulation patterns and predict short-term dynamic changes of AEC. The results show that the differences of meteorological conditions and PBL aerosols structure under different circulation patterns make the AEC of clean types significantly different from that of the pollution types. The improvements of time coefficient and vertical multi-box can effectively reduce the error caused by the variations with time and variations in the vertical direction respectively. When PM2.5 concentration, horizontal wind speed and planetary boundary layer height (PBLH) change greatly with time, the improvement of time coefficient is more obvious, which is consistent with most circulation patterns. When PM2.5 concentration and horizontal wind change greatly in the vertical direction, such as the anticyclonic, northeasterly and westerly circulations, the advantage of multi-box model is more pronounced.
"This study will provide a high precision and high resolution algorithm to assess atmospheric environmental capacity for regional or local accurate control of air pollution." Said Prof. XIN.
Citation:Yunyan Jiang, Jinyuan Xin*, Zifa Wang, Yongli Tian, Guiqian Tang, Yuanzhe Ren, Lin Wu, Xiaole Pan, Ying Wang, Danjie Jia, Yongjing Ma, Lili Wang, The dynamic multi-box algorithm of atmospheric environmental capacity, Science of the Total Environment, 2022, 806(4), 150951. https://doi.org/10.1016/j.scitotenv.2021.150951
Media contact: Ms. LIN Zheng, jennylin@mail.iap.ac.cn